Source code for burnman.eos.morse_potential

from __future__ import absolute_import

# This file is part of BurnMan - a thermoelastic and thermodynamic toolkit for the Earth and Planetary Sciences
# Copyright (C) 2012 - 2015 by the BurnMan team, released under the GNU
# GPL v2 or later.


import scipy.optimize as opt
from . import equation_of_state as eos
from ..utils.math import bracket
import warnings
import numpy as np


def bulk_modulus(volume, params):
    """
    Compute the bulk modulus as per the Morse potential
    equation of state.
    Returns bulk modulus in the same units as
    the reference bulk modulus.
    Pressure must be in :math:`[Pa]`.
    """

    VoverV0 = volume / params["V_0"]
    x = (params["Kprime_0"] - 1.0) * (1.0 - np.power(VoverV0, 1.0 / 3.0))
    K = params["K_0"] * (
        (
            2.0
            / (params["Kprime_0"] - 1.0)
            * np.power(VoverV0, -2.0 / 3.0)
            * (np.exp(2.0 * x) - np.exp(x))
        )
        + (np.power(VoverV0, -1.0 / 3.0) * (2.0 * np.exp(2.0 * x) - np.exp(x)))
    )
    return K


def shear_modulus(volume, params):
    """
    Shear modulus not currently implemented for this equation of state
    """
    return 0.0


def morse_potential(VoverV0, params):
    """
    Equation for the Morse Potential equation of state,
    returns pressure in the same units that are supplied
    for the reference bulk modulus (params['K_0'])
    """
    x = (params["Kprime_0"] - 1.0) * (1.0 - np.power(VoverV0, 1.0 / 3.0))
    return (
        3.0
        * params["K_0"]
        / (params["Kprime_0"] - 1.0)
        * np.power(VoverV0, -2.0 / 3.0)
        * (np.exp(2.0 * x) - np.exp(x))
    ) + params["P_0"]


def volume(pressure, params):
    """
    Get the Morse Potential volume at a
    reference temperature for a given pressure :math:`[Pa]`.
    Returns molar volume in :math:`[m^3]`
    """
    func = lambda V: morse_potential(V / params["V_0"], params) - pressure
    try:
        sol = bracket(func, params["V_0"], 1.0e-2 * params["V_0"])
    except:
        raise ValueError(
            "Cannot find a volume, perhaps you are outside of the range of validity for the equation of state?"
        )
    return opt.brentq(func, sol[0], sol[1])


[docs] class Morse(eos.EquationOfState): """ Class for the isothermal Morse Potential equation of state detailed in :cite:`Stacey1981`. This equation of state has no temperature dependence. """
[docs] def volume(self, pressure, temperature, params): """ Returns volume :math:`[m^3]` as a function of pressure :math:`[Pa]`. """ return volume(pressure, params)
[docs] def pressure(self, temperature, volume, params): return morse_potential(volume / params["V_0"], params)
[docs] def isothermal_bulk_modulus_reuss(self, pressure, temperature, volume, params): """ Returns isothermal bulk modulus :math:`K_T` :math:`[Pa]` as a function of pressure :math:`[Pa]`, temperature :math:`[K]` and volume :math:`[m^3]`. """ return bulk_modulus(volume, params)
[docs] def isentropic_bulk_modulus_reuss(self, pressure, temperature, volume, params): """ Returns adiabatic bulk modulus :math:`K_s` of the mineral. :math:`[Pa]`. """ return bulk_modulus(volume, params)
[docs] def shear_modulus(self, pressure, temperature, volume, params): """ Returns shear modulus :math:`G` of the mineral. :math:`[Pa]` """ return shear_modulus(volume, params)
[docs] def entropy(self, pressure, temperature, volume, params): """ Returns the molar entropy :math:`\\mathcal{S}` of the mineral. :math:`[J/K/mol]` """ return 0.0
[docs] def molar_internal_energy(self, pressure, temperature, volume, params): """ Returns the internal energy :math:`\\mathcal{E}` of the mineral. :math:`[J/mol]` """ x = (params["Kprime_0"] - 1) * (1 - np.power(volume / params["V_0"], 1.0 / 3.0)) intPdV = ( 9.0 / 2.0 * params["V_0"] * params["K_0"] / np.power(params["Kprime_0"] - 1.0, 2.0) * (2.0 * np.exp(x) - np.exp(2.0 * x) - 1.0) ) return -intPdV + params["E_0"]
[docs] def gibbs_free_energy(self, pressure, temperature, volume, params): """ Returns the Gibbs free energy :math:`\\mathcal{G}` of the mineral. :math:`[J/mol]` """ return ( self.molar_internal_energy(pressure, temperature, volume, params) + volume * pressure )
[docs] def molar_heat_capacity_v(self, pressure, temperature, volume, params): """ Since this equation of state does not contain temperature effects, simply return a very large number. :math:`[J/K/mol]` """ return 1.0e99
[docs] def molar_heat_capacity_p(self, pressure, temperature, volume, params): """ Since this equation of state does not contain temperature effects, simply return a very large number. :math:`[J/K/mol]` """ return 1.0e99
[docs] def thermal_expansivity(self, pressure, temperature, volume, params): """ Since this equation of state does not contain temperature effects, simply return zero. :math:`[1/K]` """ return 0.0
[docs] def grueneisen_parameter(self, pressure, temperature, volume, params): """ Since this equation of state does not contain temperature effects, simply return zero. :math:`[unitless]` """ return 0.0
[docs] def validate_parameters(self, params): """ Check for existence and validity of the parameters """ if "E_0" not in params: params["E_0"] = 0.0 if "P_0" not in params: params["P_0"] = 0.0 # If G and Gprime are not included this is presumably deliberate, # as we can model density and bulk modulus just fine without them, # so just add them to the dictionary as nans if "G_0" not in params: params["G_0"] = float("nan") if "Gprime_0" not in params: params["Gprime_0"] = float("nan") # Check that all the required keys are in the dictionary expected_keys = ["V_0", "K_0", "Kprime_0", "G_0", "Gprime_0"] for k in expected_keys: if k not in params: raise KeyError("params object missing parameter : " + k) # Finally, check that the values are reasonable. if params["P_0"] < 0.0: warnings.warn("Unusual value for P_0", stacklevel=2) if params["V_0"] < 1.0e-7 or params["V_0"] > 1.0e-3: warnings.warn("Unusual value for V_0", stacklevel=2) if params["K_0"] < 1.0e9 or params["K_0"] > 1.0e13: warnings.warn("Unusual value for K_0", stacklevel=2) if params["Kprime_0"] < 0.0 or params["Kprime_0"] > 10.0: warnings.warn("Unusual value for Kprime_0", stacklevel=2) if params["G_0"] < 0.0 or params["G_0"] > 1.0e13: warnings.warn("Unusual value for G_0", stacklevel=2) if params["Gprime_0"] < -5.0 or params["Gprime_0"] > 10.0: warnings.warn("Unusual value for Gprime_0", stacklevel=2)