# This file is part of BurnMan - a thermoelastic and thermodynamic toolkit for the Earth and Planetary Sciences
# Copyright (C) 2012 - 2017 by the BurnMan team, released under the GNU
# GPL v2 or later.
from __future__ import absolute_import
import warnings
import numpy as np
from . import equation_of_state as eos
def tait_constants(params):
"""
returns parameters for the modified Tait equation of state
derived from K_T and its two first pressure derivatives
EQ 4 from Holland and Powell, 2011
"""
a = (1.0 + params["Kprime_0"]) / (
1.0 + params["Kprime_0"] + params["K_0"] * params["Kdprime_0"]
)
b = params["Kprime_0"] / params["K_0"] - params["Kdprime_0"] / (
1.0 + params["Kprime_0"]
)
c = (1.0 + params["Kprime_0"] + params["K_0"] * params["Kdprime_0"]) / (
params["Kprime_0"] * params["Kprime_0"]
+ params["Kprime_0"]
- params["K_0"] * params["Kdprime_0"]
)
return a, b, c
def pressure_modified_tait(Vrel, params):
"""
Pressure according to the modified Tait equation of state.
EQ 2 from Holland and Powell, 2011
:param Vrel: V/V_0
:type Vrel: float or numpy array
:param params: Parameter dictionary
:type params: dictionary
:return: pressure in the same units that are supplied for the reference bulk
modulus (params['K_0'])
:rtype: float or numpy array
"""
a, b, c = tait_constants(params)
return (np.power((Vrel + a - 1.0) / a, -1.0 / c) - 1.0) / b + params["P_0"]
def volume(pressure, params):
"""
Returns volume [m^3] as a function of pressure [Pa] and temperature [K]
EQ 12
"""
a, b, c = tait_constants(params)
Vrel = 1.0 - a * (1.0 - np.power((1.0 + b * (pressure - params["P_0"])), -1.0 * c))
return Vrel * params["V_0"]
def bulk_modulus(pressure, params):
"""
Returns isothermal bulk modulus :math:`K_T` of the mineral. :math:`[Pa]`.
EQ 13+2
"""
a, b, c = tait_constants(params)
return (
params["K_0"]
* (1.0 + b * (pressure - params["P_0"]))
* (a + (1.0 - a) * np.power((1.0 + b * (pressure - params["P_0"])), c))
)
def intVdP(pressure, params):
"""
Returns the integral of VdP for the mineral. :math:`[J]`.
EQ 13
"""
a, b, c = tait_constants(params)
psubpth = pressure - params["P_0"]
if pressure != params["P_0"]:
intVdP = (
(pressure - params["P_0"])
* params["V_0"]
* (
1.0
- a
+ (
a
* (1.0 - np.power((1.0 + b * (psubpth)), 1.0 - c))
/ (b * (c - 1.0) * (pressure - params["P_0"]))
)
)
)
else:
intVdP = 0.0
return intVdP
[docs]
class MT(eos.EquationOfState):
"""
Base class for the generic modified Tait equation of state.
References for this can be found in :cite:`HC1974`
and :cite:`HP2011` (followed here).
An instance "m" of a Mineral can be assigned this
equation of state with the command m.set_method('mt')
(or by initialising the class with the param
equation_of_state = 'mt').
"""
[docs]
def volume(self, pressure, temperature, params):
"""
Returns volume :math:`[m^3]` as a function of pressure :math:`[Pa]`.
"""
return volume(pressure, params)
[docs]
def pressure(self, temperature, volume, params):
"""
Returns pressure [Pa] as a function of temperature [K] and volume[m^3]
"""
return pressure_modified_tait(volume / params["V_0"], params)
[docs]
def isothermal_bulk_modulus_reuss(self, pressure, temperature, volume, params):
"""
Returns isothermal bulk modulus :math:`K_T` of the mineral. :math:`[Pa]`.
"""
return bulk_modulus(pressure, params)
[docs]
def isentropic_bulk_modulus_reuss(self, pressure, temperature, volume, params):
"""
Since this equation of state does not contain temperature effects, simply return a very large number. :math:`[Pa]`
"""
return 1.0e99
[docs]
def shear_modulus(self, pressure, temperature, volume, params):
"""
Not implemented in the Modified Tait EoS. :math:`[Pa]`
Returns 0.
Could potentially apply a fixed Poissons ratio as a rough estimate.
"""
return 0.0
[docs]
def entropy(self, pressure, temperature, volume, params):
"""
Returns the molar entropy :math:`\\mathcal{S}` of the mineral. :math:`[J/K/mol]`
"""
return 0.0
[docs]
def molar_internal_energy(self, pressure, temperature, volume, params):
"""
Returns the internal energy :math:`\\mathcal{E}` of the mineral. :math:`[J/mol]`
"""
return (
self.gibbs_free_energy(pressure, temperature, volume, params)
- volume * pressure
)
[docs]
def gibbs_free_energy(self, pressure, temperature, volume, params):
"""
Returns the Gibbs free energy :math:`\\mathcal{G}` of the mineral. :math:`[J/mol]`
"""
# G = int VdP = [PV] - int PdV = E + PV
a, b, c = tait_constants(params)
intVdP = params["V_0"] * (
a
/ (b * (1.0 - c))
* (np.power(b * (pressure - params["P_0"]) + 1.0, 1.0 - c) - 1.0)
+ (1.0 - a) * (pressure - params["P_0"])
)
return intVdP + params["E_0"] + params["V_0"] * params["P_0"]
[docs]
def molar_heat_capacity_v(self, pressure, temperature, volume, params):
"""
Since this equation of state does not contain temperature effects, simply return a very large number. :math:`[J/K/mol]`
"""
return 1.0e99
[docs]
def molar_heat_capacity_p(self, pressure, temperature, volume, params):
"""
Since this equation of state does not contain temperature effects, simply return a very large number. :math:`[J/K/mol]`
"""
return 1.0e99
[docs]
def thermal_expansivity(self, pressure, temperature, volume, params):
"""
Since this equation of state does not contain temperature effects, simply return zero. :math:`[1/K]`
"""
return 0.0
[docs]
def grueneisen_parameter(self, pressure, temperature, volume, params):
"""
Since this equation of state does not contain temperature effects, simply return zero. :math:`[unitless]`
"""
return 0.0
[docs]
def validate_parameters(self, params):
"""
Check for existence and validity of the parameters
"""
if "E_0" not in params:
params["E_0"] = 0.0
if "P_0" not in params:
params["P_0"] = 1.0e5
# G and Gprime are not defined in this equation of state,
# We can model density and bulk modulus just fine without them,
# so just add them to the dictionary as nans
if "G_0" not in params:
params["G_0"] = float("nan")
if "Gprime_0" not in params:
params["Gprime_0"] = float("nan")
# Check that all the required keys are in the dictionary
expected_keys = ["V_0", "K_0", "Kprime_0", "Kdprime_0", "G_0", "Gprime_0"]
for k in expected_keys:
if k not in params:
raise KeyError("params object missing parameter : " + k)
# Finally, check that the values are reasonable.
if params["P_0"] < 0.0:
warnings.warn("Unusual value for P_0", stacklevel=2)
if params["V_0"] < 1.0e-7 or params["V_0"] > 1.0e-2:
warnings.warn("Unusual value for V_0", stacklevel=2)
if params["K_0"] < 1.0e9 or params["K_0"] > 1.0e13:
warnings.warn("Unusual value for K_0", stacklevel=2)
if params["Kprime_0"] < 0.0 or params["Kprime_0"] > 40.0:
warnings.warn("Unusual value for Kprime_0", stacklevel=2)
if params["G_0"] < 0.0 or params["G_0"] > 1.0e13:
warnings.warn("Unusual value for G_0", stacklevel=2)
if params["Gprime_0"] < -5.0 or params["Gprime_0"] > 10.0:
warnings.warn("Unusual value for Gprime_0", stacklevel=2)