Source code for burnman.eos.modified_tait

# This file is part of BurnMan - a thermoelastic and thermodynamic toolkit for the Earth and Planetary Sciences
# Copyright (C) 2012 - 2017 by the BurnMan team, released under the GNU
# GPL v2 or later.

from __future__ import absolute_import

import warnings
import numpy as np

from . import equation_of_state as eos


def tait_constants(params):
    """
    returns parameters for the modified Tait equation of state
    derived from K_T and its two first pressure derivatives
    EQ 4 from Holland and Powell, 2011
    """
    a = (1. + params['Kprime_0']) / (
        1. + params['Kprime_0'] + params['K_0'] * params['Kdprime_0'])
    b = params['Kprime_0'] / params['K_0'] - \
        params['Kdprime_0'] / (1. + params['Kprime_0'])
    c = (1. + params['Kprime_0'] + params['K_0'] * params['Kdprime_0']) / (
        params['Kprime_0'] * params['Kprime_0'] + params['Kprime_0'] - params['K_0'] * params['Kdprime_0'])
    return a, b, c


def modified_tait(x, params):
    """
    equation for the modified Tait equation of state, returns
    pressure in the same units that are supplied for the reference bulk
    modulus (params['K_0'])
    EQ 2 from Holland and Powell, 2011
    """
    a, b, c = tait_constants(params)
    return (np.power((x + a - 1.) / a, -1. / c) - 1.) / b + params['P_0']


def volume(pressure, params):
    """
    Returns volume [m^3] as a function of pressure [Pa] and temperature [K]
    EQ 12
    """
    a, b, c = tait_constants(params)
    x = 1 - a * \
        (1. - np.power((1. + b * (pressure - params['P_0'])), -1.0 * c))
    return x * params['V_0']


def bulk_modulus(pressure, params):
    """
    Returns isothermal bulk modulus :math:`K_T` of the mineral. :math:`[Pa]`.
    EQ 13+2
    """
    a, b, c = tait_constants(params)
    return params['K_0'] * (1. + b * (pressure - params['P_0'])) * (a + (1. - a) * np.power((1. + b * (pressure - params['P_0'])), c))


def intVdP(pressure, params):
    """
    Returns the integral of VdP for the mineral. :math:`[J]`.
    EQ 13
    """
    a, b, c = tait_constants(params)
    psubpth = pressure - params['P_0']

    if pressure != params['P_0']:
        intVdP = ((pressure - params['P_0'])
                  * params['V_0']
                  * (1. - a + (a * (1. - np.power((1. + b * (psubpth)), 1. - c))
                               / (b * (c - 1.)
                                  * (pressure - params['P_0'])))))
    else:
        intVdP = 0.
    return intVdP

[docs]class MT(eos.EquationOfState): """ Base class for the generic modified Tait equation of state. References for this can be found in :cite:`HC1974` and :cite:`HP2011` (followed here). An instance "m" of a Mineral can be assigned this equation of state with the command m.set_method('mt') (or by initialising the class with the param equation_of_state = 'mt'). """
[docs] def volume(self, pressure, temperature, params): """ Returns volume :math:`[m^3]` as a function of pressure :math:`[Pa]`. """ return volume(pressure, params)
[docs] def pressure(self, temperature, volume, params): """ Returns pressure [Pa] as a function of temperature [K] and volume[m^3] """ return modified_tait(params['V_0'] / volume, params)
[docs] def isothermal_bulk_modulus(self, pressure, temperature, volume, params): """ Returns isothermal bulk modulus :math:`K_T` of the mineral. :math:`[Pa]`. """ return bulk_modulus(pressure, params)
[docs] def adiabatic_bulk_modulus(self, pressure, temperature, volume, params): """ Since this equation of state does not contain temperature effects, simply return a very large number. :math:`[Pa]` """ return 1.e99
[docs] def shear_modulus(self, pressure, temperature, volume, params): """ Not implemented in the Modified Tait EoS. :math:`[Pa]` Returns 0. Could potentially apply a fixed Poissons ratio as a rough estimate. """ return 0.
[docs] def entropy(self, pressure, temperature, volume, params): """ Returns the molar entropy :math:`\mathcal{S}` of the mineral. :math:`[J/K/mol]` """ return 0.
[docs] def molar_internal_energy(self, pressure, temperature, volume, params): """ Returns the internal energy :math:`\mathcal{E}` of the mineral. :math:`[J/mol]` """ return self.gibbs_free_energy(pressure, temperature, volume, params) - volume*pressure
[docs] def gibbs_free_energy(self, pressure, temperature, volume, params): """ Returns the Gibbs free energy :math:`\mathcal{G}` of the mineral. :math:`[J/mol]` """ # G = int VdP = [PV] - int PdV = E + PV a, b, c = tait_constants(params) intVdP = params['V_0']*( a/(b*(1. - c)) * (np.power(b*(pressure - params['P_0']) + 1., 1. - c) - 1.) + (1. - a)*(pressure - params['P_0'])) return intVdP + params['E_0'] + params['V_0']*params['P_0']
[docs] def molar_heat_capacity_v(self, pressure, temperature, volume, params): """ Since this equation of state does not contain temperature effects, simply return a very large number. :math:`[J/K/mol]` """ return 1.e99
[docs] def molar_heat_capacity_p(self, pressure, temperature, volume, params): """ Since this equation of state does not contain temperature effects, simply return a very large number. :math:`[J/K/mol]` """ return 1.e99
[docs] def thermal_expansivity(self, pressure, temperature, volume, params): """ Since this equation of state does not contain temperature effects, simply return zero. :math:`[1/K]` """ return 0.
[docs] def grueneisen_parameter(self, pressure, temperature, volume, params): """ Since this equation of state does not contain temperature effects, simply return zero. :math:`[unitless]` """ return 0.
[docs] def validate_parameters(self, params): """ Check for existence and validity of the parameters """ if 'E_0' not in params: params['E_0'] = 0. if 'P_0' not in params: params['P_0'] = 1.e5 # G and Gprime are not defined in this equation of state, # We can model density and bulk modulus just fine without them, # so just add them to the dictionary as nans if 'G_0' not in params: params['G_0'] = float('nan') if 'Gprime_0' not in params: params['Gprime_0'] = float('nan') # Check that all the required keys are in the dictionary expected_keys = [ 'V_0', 'K_0', 'Kprime_0', 'Kdprime_0', 'G_0', 'Gprime_0'] for k in expected_keys: if k not in params: raise KeyError('params object missing parameter : ' + k) # Finally, check that the values are reasonable. if params['P_0'] < 0.: warnings.warn('Unusual value for P_0', stacklevel=2) if params['V_0'] < 1.e-7 or params['V_0'] > 1.e-2: warnings.warn('Unusual value for V_0', stacklevel=2) if params['K_0'] < 1.e9 or params['K_0'] > 1.e13: warnings.warn('Unusual value for K_0', stacklevel=2) if params['Kprime_0'] < 0. or params['Kprime_0'] > 40.: warnings.warn('Unusual value for Kprime_0', stacklevel=2) if params['G_0'] < 0.0 or params['G_0'] > 1.e13: warnings.warn('Unusual value for G_0', stacklevel=2) if params['Gprime_0'] < -5. or params['Gprime_0'] > 10.: warnings.warn('Unusual value for Gprime_0', stacklevel=2)