Source code for burnman.eos.birch_murnaghan_4th

from __future__ import absolute_import
# This file is part of BurnMan - a thermoelastic and thermodynamic toolkit for the Earth and Planetary Sciences
# Copyright (C) 2012 - 2017 by the BurnMan team, released under the GNU
# GPL v2 or later.

import numpy as np
import scipy.optimize as opt
from . import equation_of_state as eos
from ..utils.math import bracket
import warnings


def bulk_modulus_fourth(volume, params):
    """
    compute the bulk modulus as per the fourth order
    birch-murnaghan equation of state.  Returns bulk
    modulus in the same units as the reference bulk
    modulus.  Pressure must be in :math:`[Pa]`.
    """

    x = params['V_0'] / volume
    f = 0.5 * (pow(x, 2. / 3.) - 1.0)

    Xi = (3. / 4.) * (4. - params['Kprime_0'])
    Zeta = (3. / 8.) * ((params['K_0'] * params['Kprime_prime_0']) + params[
        'Kprime_0'] * (params['Kprime_0'] - 7.) + 143. / 9.)

    K = (5. * f * pow((1. + 2. * f), 5. / 2.) * params['K_0'] * (1. - (2. * Xi * f) + (4. * Zeta * pow(f, 2.)))) + \
        (pow(1. + (2. * f), 7. / 2.) * params['K_0'] * (
            1. - (4. * Xi * f) + (12. * Zeta * pow(f, 2.))))

    return K


def volume_fourth_order(pressure, params):
    func = lambda x: birch_murnaghan_fourth(
        params['V_0'] / x, params) - pressure
    try:
        sol = bracket(func, params['V_0'], 1.e-2 * params['V_0'])
    except:
        raise ValueError(
            'Cannot find a volume, perhaps you are outside of the range of validity for the equation of state?')
    return opt.brentq(func, sol[0], sol[1])


def birch_murnaghan_fourth(x, params):
    """
    equation for the fourth order birch-murnaghan equation of state, returns
    pressure in the same units that are supplied for the reference bulk
    modulus (params['K_0'])
    """

    f = 0.5 * (pow(x, 2. / 3.) - 1.0)
    Xi = (3. / 4.) * (4. - params['Kprime_0'])
    Zeta = (3. / 8.) * ((params['K_0'] * params['Kprime_prime_0']) + params[
        'Kprime_0'] * (params['Kprime_0'] - 7.) + 143. / 9.)

    return 3. * f * pow(1. + 2. * f, 5. / 2.) * params['K_0'] * (1. - (2. * Xi * f) + (4. * Zeta * pow(f, 2.))) + params['P_0']


[docs]class BM4(eos.EquationOfState): """ Base class for the isothermal Birch Murnaghan equation of state. This is fourth order in strain, and has no temperature dependence. """
[docs] def volume(self, pressure, temperature, params): """ Returns volume :math:`[m^3]` as a function of pressure :math:`[Pa]`. """ return volume_fourth_order(pressure, params)
[docs] def pressure(self, temperature, volume, params): return birch_murnaghan_fourth(volume / params['V_0'], params)
[docs] def isothermal_bulk_modulus(self, pressure, temperature, volume, params): """ Returns isothermal bulk modulus :math:`K_T` :math:`[Pa]` as a function of pressure :math:`[Pa]`, temperature :math:`[K]` and volume :math:`[m^3]`. """ return bulk_modulus_fourth(volume, params)
[docs] def adiabatic_bulk_modulus(self, pressure, temperature, volume, params): """ Returns adiabatic bulk modulus :math:`K_s` of the mineral. :math:`[Pa]`. """ return bulk_modulus_fourth(volume, params)
[docs] def shear_modulus(self, pressure, temperature, volume, params): """ Returns shear modulus :math:`G` of the mineral. :math:`[Pa]` """ return 0.
[docs] def entropy(self, pressure, temperature, volume, params): """ Returns the molar entropy :math:`\mathcal{S}` of the mineral. :math:`[J/K/mol]` """ return 0.
[docs] def molar_internal_energy(self, pressure, temperature, volume, params): """ Returns the internal energy :math:`\mathcal{E}` of the mineral. :math:`[J/mol]` """ x = np.power(volume/params['V_0'], -1./3.) x2 = x*x x4 = x2*x2 x6 = x4*x2 x8 = x4*x4 xi1 = 3.*(4. - params['Kprime_0'])/4. xi2 = 3./8.*(params['K_0'] * params['Kprime_prime_0'] + params['Kprime_0'] * (params['Kprime_0'] - 7.)) + 143./24. intPdV = (-9./2. * params['V_0'] * params['K_0'] * ((xi1 + 1.)*(x4/4. - x2/2. + 1./4.) - xi1*(x6/6. - x4/4. + 1./12.) + xi2*(x8/8 - x6/2 + 3.*x4/4. - x2/2. + 1./8.))) return - intPdV + params['E_0']
[docs] def gibbs_free_energy(self, pressure, temperature, volume, params): """ Returns the Gibbs free energy :math:`\mathcal{G}` of the mineral. :math:`[J/mol]` """ # G = int VdP = [PV] - int PdV = E + PV return self.molar_internal_energy(pressure, temperature, volume, params) + volume*pressure
[docs] def molar_heat_capacity_v(self, pressure, temperature, volume, params): """ Since this equation of state does not contain temperature effects, simply return a very large number. :math:`[J/K/mol]` """ return 1.e99
[docs] def molar_heat_capacity_p(self, pressure, temperature, volume, params): """ Since this equation of state does not contain temperature effects, simply return a very large number. :math:`[J/K/mol]` """ return 1.e99
[docs] def thermal_expansivity(self, pressure, temperature, volume, params): """ Since this equation of state does not contain temperature effects, simply return zero. :math:`[1/K]` """ return 0.
[docs] def grueneisen_parameter(self, pressure, temperature, volume, params): """ Since this equation of state does not contain temperature effects, simply return zero. :math:`[unitless]` """ return 0.
[docs] def validate_parameters(self, params): """ Check for existence and validity of the parameters """ if 'E_0' not in params: params['E_0'] = 0. if 'P_0' not in params: params['P_0'] = 0. # If G and Gprime are not included this is presumably deliberate, # as we can model density and bulk modulus just fine without them, # so just add them to the dictionary as nans if 'G_0' not in params: params['G_0'] = float('nan') if 'Gprime_0' not in params: params['Gprime_0'] = float('nan') # Check that all the required keys are in the dictionary expected_keys = ['V_0', 'K_0', 'Kprime_0'] for k in expected_keys: if k not in params: raise KeyError('params object missing parameter : ' + k) # Finally, check that the values are reasonable. if params['P_0'] < 0.: warnings.warn('Unusual value for P_0', stacklevel=2) if params['V_0'] < 1.e-7 or params['V_0'] > 1.e-3: warnings.warn('Unusual value for V_0', stacklevel=2) if params['K_0'] < 1.e9 or params['K_0'] > 1.e13: warnings.warn('Unusual value for K_0', stacklevel=2) if params['Kprime_0'] < 0. or params['Kprime_0'] > 10.: warnings.warn('Unusual value for Kprime_0', stacklevel=2) if params['Kprime_prime_0'] > 0. or params['Kprime_prime_0'] < -10.: warnings.warn('Unusual value for Kprime_prime_0', stacklevel=2)